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Number of distinct sites visited by a random walker trapped by an absorbing boundary
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The number of distinct sites visited by a lattice random walker is a subject of continuing interest in both
mathematics and physics. All previous investigations have used the assumption that the lattice is unbounded.
An assessment of the amount of tissue interrogated by a photon in reflectance measurements for diagnostic
purposes suggests analyzing properties of the average number of distinct sites visited by a random walker
trapped by an absorbing plane at timet. We show that for sufficiently larget this number is the same as the
average number of distinct sites visited for this time when the surface is not present. A more complete analysis
is possible for a random walk on a line terminated by an absorbing point.
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I. INTRODUCTION

Techniques for estimating optical parameters in hum
tissue for diagnostic purposes are being widely explored,
cause of potential hazards associated with the modal
based on other forms of radiation. Good descriptions o
sampling of experimental techniques used for this purp
are suggested in@1–3#. Many theoretical approaches to th
problem have been used, requiring varying degrees of m
ematical and numerical sophistication in their implemen
tion. These include transport theory, diffusion theory, and
theory of lattice random walks, which may be characteriz
as a discrete version of diffusion theory. The latter the
@4,5# has been successfully applied to the analysis of a la
number of data sets, by Gandjbakhche and his collabora
@6#. In the class of models to be discussed here, the tissu
often modeled as a semi-infinite medium whose interfac
represented by an absorbing plane since penetration de
are generally of the order of millimeters when near-infrar
radiation is used.

An important requirement in the measurement of opti
parameters is the ability to characterize the extent to wh
tissue has been interrogated by photons. One approac
characterizing the interrogated region has recently been
ported in@7#. The calculation in that reference, based on
continuous-time random walk~CTRW! @8#, applied to the
problem at hand@9#, produced an exact expression for t
average value of the ratiozav/zmax, wherezav is the average
depth of penetration by a photon andzmax is the maximum
depth of penetration. In this paper we suggest an alterna
characterization of the volume probed by a photon. O
analysis will again be based on properties of a lattice CTR
in three dimensions. Specifically, we study the expec
number of distinct sites visited by the random walk~which is
the surrogate for a photon!, conditioned on its being ab
sorbed by the surface at a target site at a specific time.
suggested analysis can also be extended to the case of
tons traversing a finite slab, which models so-called tran
lumination experiments.
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We parenthetically remark that statistical properties of
number of distinct sites visited on a lattice have heretof
only been studied in the case of translational invariance,
an unbounded space. Recently, the effects of an absor
boundary on the average volume of a Wiener sausage h
been analyzed@10#. The Wiener sausage is a continuum an
log of the random walk. There, in contrast to the pres
work, they analyzed properties of Wiener sausages for tra
tories that have not been absorbed. This work focuses
absorbed trajectories, which are closer to the optical appl
tion.

II. GENERAL FORMALISM

The tissue will be modeled in terms of a semi-infini
simple cubic lattice bounded by a plane consisting of tr
ping points. A point in the lattice will be denoted byr
5(r,z), wherer5(x,y) and x, y, and z are integers. The
absorbing surface is defined to bez50, and the interior
points correspond toz.0 so that the range of variables
z>0 and2`<x,y<`. If ms8 is the transport-corrected sca
tering coefficient, the actual physical coordinater is found to
equal r&/ms8 @11#. We consider a Markovian neares
neighbor continuous-time random walk with the avera
time between successive steps equal tok21, wherek is the
step frequency. Without loss of generality we can setk51.
The propagator for this model in an unbounded space
known to be @8# Gun(r ,t)5exp(2t)Ix(t/3)I y(t/3)I z(t/3),
where I m(u) is a modified Bessel function of orderm and
argumentu @12#.

We derive an expression for the average number of
tinct sites visited by a random walker, initially at the poi
r05(0,z0), conditional on being absorbed at a target siteR
5(rf ,0) at timet. This number is equal to the average num
ber of distinct sites visited by trajectories, initially atr0 , that
are at the siter f5(rf,1) at timet. The fraction of these tra-
jectories is the propagatorG(r f ,tur0). The average numbe
of distinct sites visited by these trajectories will be deno
by ^N(tur0)& r f

, where the summation is over trajectories th

are atr f at timet. If we let N̄(turfuz0) be the average numbe
of distinct sites visited by trajectories trapped atR at time t,
then we have the relation
0
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N̄~ turfuz0!5
^N~ tur0!& r f

G~r f ,tur0!
. ~2.1!

A formal expression for the number of distinct sites v
ited by a trajectoryWt defined in terms of the position of th
random walker at timest8<t, $rWt

(t8)%, can be written us-

ing an indicator functionI (r uWt) defined byI (r uWt)51 if
rWt

(t8)5r , t8<t and 50 otherwise. The number of site

visited by the trajectory isN(Wt)5( rI (r uWt). Averaging
both sides of this definition over trajectories conditioned
r (0)5r0 and r (t)5r f , we obtain

^N~ tur0!& r f
5^N~Wt!& r f

5(
r

^I ~r uWt!& r f
, ~2.2!

which requires calculating the function̂I (r uWt)& r f
. This

function can be expressed in terms of the probability den
for the first time that the random walk reaches siter ,
f (r ,tur0). The required relation is

^I ~r uWt!& r f
5E

0

t

G~r f ,t2tur !u f ~r ,tur0!dt. ~2.3!

Substituting this into Eq.~2.2!, we can write

^N~ tur0!& r f
5E

0

t

(
r

G~r f ,t2tur ! f ~r ,tur0!dt. ~2.4!

The Laplace transform of the functionf (r ,tur0) will be
denoted byf̂ (r ,sur0), and can be expressed in terms of tran
forms of the propagator as@8#,

f̂ ~r ,sur0!5
Ĝ~r ,sur0!

Ĝ~r ,sur !
, rÞr0 . ~2.5!

Using the method of images, we can expressĜ(r ,sur ) in
terms of Laplace transforms of the propagator for a rand
walk, initially at the origin, on an unbounded latticeĜun(r ,s)
as

Ĝ~r ,sur !5Ĝ„~r,z!;su~r,z!…5Ĝun„~0,0!;s…2Ĝun„~0,2z!;s….
~2.6!

We take advantage of the fact that the second term on
right-hand side of Eq.~2.6! is small when compared to th
first term, which allows us to write Ĝ(r ,sur )
'Ĝun„(0,0);s…. Thus, we have

f̂ ~r ,sur0!'
Ĝ~r ,sur0!

Ĝun~0;s!
. ~2.7!

To analyze the behavior of the expected number of d
tinct sites visited by random walkers that escape at lo
times, we approximate toĜun(0;s) by settings50. This al-
lows us to find the large-time behavior off (r ,tur0), given by
01290
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f ~r ,tur0!'
G~r ,tur0!

Ĝun~0;0!
. ~2.8!

Substituting this into Eq.~2.4! and using the relation
G(r f ,tur0)5( rG(r f ,t2tur )G(r ,tur0), one finds

^N(tur0)& r f
'tG(r f ,tur0)/Ĝun(0,0). To finish the calculation

of the long-time behavior of the average number of disti
sites visited by trajectories that are trapped at timet, we then
substitutê N(tur0)& r f

into the definition ofN̄(turfuz0) in Eq.
~2.1! to finally find

N̄~ turfuz0!'t/Ĝun~0,0!. ~2.9!

This is one of the main results of our paper. It shows t
N̄(turfuz0) depends neither on the initial distance from t
absorbing planez0 , nor on the position of the trapping sit
R5(rf,0). Moreover, it is identical to the result in the ab
sence of any boundary@8#.

Equation~2.9! predicts a linear dependence ofN̄(turfuz0)
on time with the slope@Ĝun(0,0)#215@*0

` exp(2t)I0
3(t/

3)dt#21'0.6596. To check the validity of the result in Eq
~2.9!, we ran simulations consisting of 30 000 random wal
each starting fromr05(0,0,z0) for two initial locations,z0
510 and 15. The slope estimated from the simulatio
agreed with the theoretically predicted value to within 2%

III. THE ONE-DIMENSIONAL CASE

It is interesting to consider properties of the expec
number of distinct sites visited on a line terminated by
absorbing point because, in contrast to three dimensions
exact solution can be found. In the linear random walk,
function N(tux0) coincides with the span when the lattic
spacing is used as a unit of length. With this in mind, w
analyze the span for trajectories that originate fromx0.0
and are trapped at the origin at timet. Notice that for these
trajectories the span coincides with the maximal deviat
from the origin and, therefore, exceedsx0 . For simplicity,
we approximate the random walk by a diffusion process.

To calculate the probability density for the span, we ins
a second absorbing point atL.x0 that ensures that any ran
dom walker trapped atx50 cannot reachx5L. Let
gL(x,tux0) be the corresponding propagator. It satisfies
diffusion equation

]gL

]t
5D

]2gL

]x2 , ~3.1!

where D is the diffusion constant. This equation is to b
solved subject to the initial conditiongL(x,0ux0)5d(x2x0)
and boundary conditionsgL(0,tux0)5gL(L,tux0)50. The
flux into the origin by trajectories whose span is less thaL
will be denoted byJL(tux0), and is related to the propagato
by JL(tux0)5D]gL(x,tux0)/]xux50 . The fraction of trajecto-
ries escaping atx50 between timest andt1dt, whose span
1-2
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is less thanL, is JL(tux0)dt. The fraction of the trajectories
with a span betweenL andL1dL, trapped betweent and t
1dt, is given by

@JL1dL~ tux0!2JL~ tux0!#dt'
]JL~ tux0!

]L
dLdt. ~3.2!

The total fraction of trajectories trapped by the absorb
point at the origin betweent and t1dt is J`(tux0)dt, where
J`(tux0) is the flux in the absence of a second boundary

Using these functions, we introduce the probability de
sity for the span of a diffusing particle, initially atx0 , that
escapes at timet, w(Lutux0). The probabilityw(Lutux0)dL is
the fraction of trajectories escaping betweent and t1dt,
whose span is betweenL andL1dL, out of the total number
of trajectories that escape betweent and t1dt. This prob-
ability is given by the ratio of the fraction in Eq.~3.2! to
J`(tux0)dt. This leads to

w~Lutux0!5
1

J`~ tux0!

]JL~ tux0!

]L
. ~3.3!

The function w(Lutux0) is properly normalized, satisfying
*x0

` w(Lutux0)dL51. Thus, the fluxJL(tux0) is the function

from which all properties can be calculated. Specifically,
average span for trajectories escaping at timet is

L̄~ tux0!5E
x0

`

Lw~Lutux0!dL5
1

J`~ tux0!
E

x0

`

L
]JL~ tux0!

]L
dL.

~3.4!

A relatively easy way to do the calculations is in terms
the Laplace transform with respect tot. If we let a
5(s/D)1/2, the transform of JL(tux0) is found to be
ĴL(sux0)5cosh(ax0)2sinh(ax0)coth(aL), so that

E
x0

`

L
] ĴL~sux0!

]L
dL5x0e2ax01

sinh~ax0!

a
lnF 1

12e22ax0G .
~3.5!

An expression for the fluxJ`(tux0), required for the denomi-
nator term in Eqs.~3.3! and ~3.4!, is
iol

p

-
e
-
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J`~ tux0!5
x0

A4pDt3
expS 2

x0
2

4Dt D . ~3.6!

Using the results in Eqs.~3.5! and~3.6!, we can write the
average span as

L̄~ tux0!5x01
1

J`~ tux0!
L21H sinh~ax0!

a
lnF 1

12e22ax0G J ,

~3.7!

whereL21$ % denotes the inverse Laplace transform of t
function in brackets. We use this expression to evaluate
long- and short-time behaviors ofL̄(tux0). At long times one
finds

L̄~ tux0!'ApDt, Dt@x0
2, ~3.8!

which is independent ofx0 , as might be expected. In th
opposite limit, one finds

L̄~ tux0!'x01
Dt

x0
, x0

2@Dt. ~3.9!

It is also possible to expand and invert the transform in E
~3.7! to find a solution valid for all times, and expressed
terms of an infinite series. One can also find a solution
terms of an infinite series for the probability densi
w(Lutux0).

It is interesting to compare the long-time behavior of t
span given in Eq.~3.8! to the span on an unbounded line.
this case, the average span is known exactly, and is give
L̄un(t)54ADt/p @13#. A comparison of the two results
shows that the ratioL̄(tux0)/L̄un(t) approachesp/4 as t
→`. In contrast, in three dimensions the ratio approac
unity.

In conclusion, we have obtained a seemingly paradox
result that in three or more dimensions the boundary has
effect on the asymptotic behavior of the expected numbe
distinct sites visited by a random walker before trapping
remains an open question as to whether or not the asymp
distribution remains a Gaussian in three or more dimensio
as proved in@14# for an unbounded random walk, but w
conjecture that this is indeed the case.
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