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Number of distinct sites visited by a random walker trapped by an absorbing boundary
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The number of distinct sites visited by a lattice random walker is a subject of continuing interest in both
mathematics and physics. All previous investigations have used the assumption that the lattice is unbounded.
An assessment of the amount of tissue interrogated by a photon in reflectance measurements for diagnostic
purposes suggests analyzing properties of the average number of distinct sites visited by a random walker
trapped by an absorbing plane at titn&Ve show that for sufficiently largethis number is the same as the
average number of distinct sites visited for this time when the surface is not present. A more complete analysis
is possible for a random walk on a line terminated by an absorbing point.
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[. INTRODUCTION We parenthetically remark that statistical properties of the
number of distinct sites visited on a lattice have heretofore
Techniques for estimating optical parameters in humarenly been studied in the case of translational invariance, i.e.,
tissue for diagnostic purposes are being widely explored, bean unbounded space. Recently, the effects of an absorbing
cause of potential hazards associated with the modaliti€Boundary on the average volume of a Wiener sausage have
based on other forms of radiation. Good descriptions of deen analyzeffl0]. The Wiener sausage is a continuum ana-
sampling of experimental techniques used for this purposé#g of the random walk. There, in contrast to the present
are suggested ifl—3]. Many theoretical approaches to this work, they analyzed properties of Wiener sausages for trajec-
problem have been used, requiring varying degrees of mattiories that have not been absorbed. This work focuses on
ematical and numerical sophistication in their implementa-absorbed trajectories, which are closer to the optical applica-
tion. These include transport theory, diffusion theory, and thdion.
theory of lattice random walks, which may be characterized
as a discrete version of diffusion theory. The latter theory
[4,5] has been successfully applied to the analysis of a large Il. GENERAL FORMALISM
number of data sets, by Gandjbakhche and his collaborators The tissue will be modeled in terms of a semi-infinite

[6]. In the class of models to be discussed here, the tissue i§mple cubic lattice bounded by a plane consisting of trap-
often modeled as a semi-infinite medium whose interface i ing points. A point in the lattice will be denoted by
represented by an absorbing plane since penetration deptE_s(p,Z)' where p=(x,y) andx, y, andz are integers. The
are generally of the order of millimeters when near-infrared(.ibsorbing surface is defined to ke=0. and the interior

radiation is used. points correspond ta>0 so that the range of variables is

An important requirement in the measurement of optlcaIZ>O and—o<x,y=<. If u is the transport-corrected scat-

parameters is the ability to characterize the extent to Whic'?ering coefficient, the actual physical coordinatie found to

tissue hafs_been m_terrogated by p_hotons. One approach é%ual rv2/pi [11]. We consider a Markovian nearest-
characterizing the interrogated region has recently been re-_. . : :
: 2 heighbor continuous-time random walk with the average
ported in[7]. The calculation in that reference, based on the. . .
- . . time between successive steps equaktd, wherek is the
continuous-time random walkCTRW) [8], applied to the step frequency. Without loss of generality we canlsetl
problem at hand9)], produced an exact expression for theThg roq a at)(;.r for this model gi]n an uzbounded s a'ce is
average value of the ratim,, /7., Wherez,, is the average bropag b

, : . known to be [8] G, (r,t)=exp(t)l(t/3)I,(t/3)I(t/3),
depth of penetration by a photon amg,, is the maximum . un XSy z
depth of penetration. In this paper we suggest an alternativ\évrgiﬁle’;‘ﬁ)[l';]a modified Bessel function of orden and

characterization of the volume probed by a photon. ouf We derive an exoression for the average number of dis-

analysis will again be based on properties of a lattice CTRW. . g P rag .

in three dimensions. Specifically, we study the expecte Inct sites V'S'teq 'by a rando'm walker, initially at the point

number of distinct sites visited by the random walkhich is fo=(0.2y), conditional on being absorbed at a target 8t
=(ps,0) at timet. This number is equal to the average num-

the surrogate for a photgnconditioned on its being ab- L i o . S
; th of t a target site at ific ime. er of dlstlnpt sites visited l_Jy trajectorles,_|n|t|aIIyr@t, that
sorbed by the surface at a target site at a specific time Olﬂg at the site;=(p;,1) at timet. The fraction of these tra-

suggested analysis can also be extended to the case of pﬁa(f Lo
tons traversing a finite slab, which models so-called transillSctories Is _the p_ro_pagatc@(rf o) . The average humber
lumination experiments, of distinct sites visited by these trajectories will be denoted

by (N(t|ro)>rf, where the summation is over trajectories that

are atr; at timet. If we let W(t|pf|zo) be the average number
*Permanent address: Karpov Institute of Physical Chemistry, 1®f distinct sites visited by trajectories trappedratt timet,
Vorontsovo Pole St., 103064 Moscow K-64, Russia. then we have the relation
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_ _<N(t|l’o)>r, ; _ G(rtro)
N(t|Pf|Zo)—m- (2.1) UJHO)NMI

(2.9

A formal expression for the number of distinct sites vis- o o ) ]
ited by a trajectoryW, defined in terms of the position of the Substituting this into Eq.(2.4) and using the relation
random walker at times'<t, {ry(t')}, can be written us- G(rf,t|r0)=E,G(rf,t—¢|Ar)G(r,r|r0), - one f'”fjs
ing an indicator functiorl (r|W,) defined byl (r|W,)=1 if (N(t[ro))r,~tG(rr,t[ro)/Gun(0,0). To finish the calculation
rWt(t')zr, t’<t and =0 otherwise. The number of sites of the long-time behavior of the average number of distinct
visited by the trajectory iN(W,)=3,1(r|W,). Averaging sites visited by trajectories that are trapped at tinvee then

both sides of this definition over trajectories conditioned onsubstitute(N(t|ro)),, into the definition ofN(t|py|zo) in Eq.
r(0)=rq andr(t)=r¢, we obtain (2.2) to finally find

(N(tlro)) =(N(W)), =2 (HrW)yr, (22 N(t|pi|z0) ~/Gy(0,0). 2.9

which requires calculating the functio(1(r|Wt)>rf. This 1h|s is one of the main results of our paper. It shows that

function can be expressed in terms of the probability densin'/\l(t'pflz‘)) depends neither on the initial distance from the

for the first time that the random walk reaches site absorbing plangg, nor on the position of the trapping site
£(r,t|ro). The required relation is R=(pf,0). Moreover, it is identical to the result in the ab-

sence of any boundaif]. B
t Equation(2.9) predicts a linear dependence Mft| p;| zo)
(H(r[Wo)e = JOG(rf*t‘ ADlf(rrrodr. 23 o5 time with the slope[G,(0.0)] =[5 exp(-t)Id(Y
3)dt] 1~0.6596. To check the validity of the result in Eq.
Substituting this into Eg(2.2), we can write (2.9), we ran simulations consisting of 30 000 random walks,
each starting fronty=(0,07,) for two initial locations,z,

[t =10 and 15. The slope estimated from the simulations
(N(t[ro))r,= OEr G(rt=1Nf(r,7lro)dr. (24 4greed with the theoretically predicted value to within 2%.

The Laplace transform of the functiodi{r,t|ry) will be IIl. THE ONE-DIMENSIONAL CASE
denoted b)ff(r,s|ro), and can be expressed in terms of trans-

forms of the propagator 48], It is interesting to consider properties of the expected

number of distinct sites visited on a line terminated by an
absorbing point because, in contrast to three dimensions, an

Hroslro) = G(r’S“O), . (2.5  exact solution can be found. In the linear random walk, the

G(r,sr) function N(t|x,) coincides with the span when the lattice
spacing is used as a unit of length. With this in mind, we
analyze the span for trajectories that originate fregn-0

rﬁ.nd are trapped at the origin at tiheNotice that for these
trajectories the span coincides with the maximal deviation
from the origin and, therefore, exceerg. For simplicity,

we approximate the random walk by a diffusion process.

- . N N To calculate the probability density for the span, we insert

G(r,s[N=G((p.2);5/(p.2))=Gun((0,0;9) = Gu(0.22);S). 4 second absorbing point Bt x, that ensures that any ran-

(2.6 dom walker trapped atk=0 cannot reachx=L. Let

L(X,t|xo) be the corresponding propagator. It satisfies the

iffusion equation

Using the method of images, we can expré;(sr,s|r) in
terms of Laplace transforms of the propagator for a rando
walk, initially at the origin, on an unbounded lattiG,(r,s)

as

We take advantage of the fact that the second term on th
right-hand side of Eq(2.6) is small when compared to the

first term, which allows us to write é(r,s|r)

~G,((0,0):5). Thus, we have agL

g,
e D Vel (3.1

. G(r,s|r
f(r,s|r0)~A(—|0) (2.7 where D is the diffusion constant. This equation is to be

Gun(0;s) solved subject to the initial conditiogy (x,0/X) = (X —Xo)
and boundary conditiong (0,t|xg) =g, (L,t|xg)=0. The
To analyze the behavior of the expected number of disflux into the origin by trajectories whose span is less than
tinct sites visited by random walkers that escape at longyill be denoted by, (t|xo), and is related to the propagator
times, we approximate 16,,(0;s) by settings=0. This al- by J, (t|xo) =D g, (X,t|xo)/3X|«—o. The fraction of trajecto-
lows us to find the large-time behavior tff,t|ry), given by  ries escaping at=0 between timesandt+dt, whose span
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is less tharL, is J (t|xo)dt. The fraction of the trajectories Xo Xg
with a span betweeh andL +dL, trapped betweehandt J..(t|Xg) = —ex;{ - —) . (3.6
+dt, is given by V4mDt? 4Dt
33, (txo) Using the results in Eq$3.5 and(3.6), we can write the
[IL aL(t]xo) — I, (t]xg) Jdt=~ %oﬂ.dt. (3.2  average span as

— _,| sinh(axo) 1
The total fraction of trajectories trapped by the absorbing L(t|xp)=x%o+ J.(tx )E a In 1—e 2a%|[
point at the origin betweenandt+dt is J..(t|xo)dt, where =ino 3.7
J..(t|xo) is the flux in the absence of a second boundary.

Using these functions, we introduce the probability den-where £~*{} denotes the inverse Laplace transform of the
sity for the span of a diffusing particle, initially &b, that function in brackets. We use this expression to evaluate the
escapes at time w(L|t|x,). The probabilityw(L|t|x,)dL is  long- and short-time behaviors b{t|x,). At long times one
the fraction of trajectories escaping betweeand t+dt,  finds
whose span is betwegénandL +dL, out of the total number

_ N .2
of trajectories that escape betweeandt+dt. This prob- L(t[xg)~V@Dt, Dt>xq, (3.9
ability is giveq by the ratio of the fraction in Eq3.2) to  \hich is independent ofk,, as might be expected. In the
Ja(t[xo)dt. This leads to opposite limit, one finds
Litlx.) = 3L (t]xo) 33 _ Dt
w(L| |XO)_JOO(t|XO) aL (3.3 L(t|x0)~xo+x—o, x2>Dt. (3.9

The functionw(L|t|x,) is properly normalized, satisfying It is also possible to expand and invert the transform in Eq.

ffOW(L|t|Xo)d|-=1- Thus, the fluxJ, (t|x) is the function (3.7 to find a solution valid for all times, and expressed in

from which all properties can be calculated. Specifically, thd©'M$ Of an infinite series. One can also find a solution in

average span for trajectories escaping at tirie ;r;(rmaxo)f an infinite series for the probability density
_ » 1 = 3 (o) Itis i%teresting to compare the long-time behavior of the
L(t|Xo)=f Lw(L|t[xp)dL= 3.(1x0) f L—L L. span given in Eq(3.8) to the span on an unbounded line. In
%o #AT07 X0 3.4 this case, the average span is known exactly, and is given by
' Lyi(t)=4yDt/7 [13]. A comparison of the two results
Arelatively easy way to do the calculations is in terms of shows that the ratid(t|x,)/L,(t) approachesm/4 ast

the Laplace transform with respect to If we let @ o |n contrast, in three dimensions the ratio approaches
=(s/D)*?, the transform ofJ (t|xo) is found to be unity.

jL(s|x0)=cosha>q))—sinh(a>@)coth(aL), so that In conclusion, we have obtained a seemingly paradoxical
R result that in three or more dimensions the boundary has no

= 9JL(8[xo) _ax., Sinh(axp) 1 effect on the asymptotic behavior of the expected number of
LOL gL dL=Xee ot N1 e 2% distinct sites visited by a random walker before trapping. It

(3.5  remains an open question as to whether or not the asymptotic
distribution remains a Gaussian in three or more dimensions,
An expression for the flud..(t|x,), required for the denomi- as proved in[14] for an unbounded random walk, but we

nator term in Egs(3.3) and(3.4), is conjecture that this is indeed the case.
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